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A mathematical construction is given for arbitrarily many distinct crystal structures all of which would 
give the same diffraction pattern. A. L. Patterson's concept of homometric sets is analyzed, and ex- 
amples are given in one, two and three dimensions. 

Let al, a2,a3 be linearly independent vectors in three- 
dimensional space. Let A be the three-by-three matrix 
whose columns are the aj. The vectors aj determine a 
lattice of points 

An = nlat + n2a2 + n3a3 (1) 

where the nj are integers. The basic cell of the lattice 
is the set of points 

x = ~ a l  + ~za2 + ~3a3 with 0 < #j < 1 . (2) 

The reciprocal lattice has the matrix 

B = ( A r ) - t  =(A-~) r . (3) 

Its columns bj satisfy 

ak. bj = 6k~ = 0 if k Cj 
= 1 if k = j .  (4) 

The reciprocal lattice consists of the points Bh, where 
the hj are integers (called Miller indices). 

Let the atoms in a crystal be located at r t , . . . , r N  in 
the basic cell (2) and at all congruent points rj + An. By 
X-ray analysis, one tries to find the positions rj. 

The F factor is defined to be 

N 

F(h)= ~..f~ exp 2~zi h .  r~. (5) 
s = l  

For h in the reciprocal lattice, observations are made of 
N N 

IV(h)l 2= ~ ~f~f t  exp 2zcih. ( r , - r s ) .  (6) 
s = l  t = l  

* This work was supported by A.E.C. Contract AT(04-3)- 
767, Project Agreement No. 12. 

The f~ are positive numbers. 
If the F factors were observed, the rs would be 

determined uniquely. Ambiguity results from observing 
IF2I instead of F. 

In the following definitions, let X,Y, . . .  represent 
finite non-empty point sets in the real Euclidian space 
of n dimensions. A set X is allowed to have repeated 
elements, but no ordering or indexing is prescribed. 
For instance, if X= {1,1,2} in one dimension, then 

X={1,2,1} but X¢{1 ,2} .  

Given X and Y, we define the sets 

X + Y = { x + y }  (x in X, y in Y) 
2X= {2x} (x in X) 

- X = { - x }  (x in X) 
X + c =  {x +c} (x in X) 
X - Y = X + ( - Y ) = { x - y }  
D(X)=X-X. 

(7) 

Thus, if X has m members, D(×) has m 2 members, in- 
eluding at least m points 0. 

Suppose 

X= {xl . . . .  ,xm} and Y= {y~,...,Ym} • (8) 

We say 

X = Y  if 

xl = Y jl, • • •, Xm = Yjm 

where J l , . . . , Jm is some permutation of 1 , . . . , m .  
Let x and y be points in real n-dimensional space. 
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Let A be an n × n matrix. We write 

x -  y mod A (9) 
to mean 

x = y + A k  

where k is some vector with integer components, or 
equivalently 

x = y + k l a ~  + . . .  + k , a ,  

where the kj are integers and the aj are the columns of 
A. 

If X and Y are the sets (8) in n dimensions, we say 

X=Y rood A (10) 
if 

xk = Yjk mod  A (k = 1 , . . . ,  m) 

where j r , . . .  ,Jm is some permutation of 1 , . . . , m .  
If X is a (finite, non-empty, real) set in n dimensions, 

we define the complex-valued Fourier-sum transform 

~0(h,X) = ~ exp 2nih.  x (11) 
xeX 

for all real h in n dimensions. Note that 

l~o(h,X)l ~=~o[h,o(X)] (12) 
~0(h, - X )  = cp*(h,X) (13) 

cp(h,X + Y) = ~0(h,X) cp(h,Y). (14) 

[By ~o* in (13) we mean the complex conjugate of cp. 
Thus, ~o is real if X = - X . )  The function cp is just an F 
factor if all the f factors are replaced by 1. 

In the basic cell of a crystal, let 

R = { r l , . . . , r N }  

be the set of positions of the atoms. By observing [F(h)l z 
for h in the reciprocal lattice, one finds D(R) mod A. 
Note that one does not find D(R), but only D(R) mod 
A. The question is: to what extent does D(R) mod A 
determine R? 

There are trivial modifications of R that leave the 
difference set unchanged. If 

$ - _+ R + c mod A (15) 

where e is any single vector, then 

D(S)- D(R) mod A. (16) 

If sets R and S satisfy 

S ~  + R + e  mod A, but D(S) -D(R)  mod A (17) 

we will say that the sets S and R are homometric mod 
A. Patterson (1944) called such sets homometric-  with- 
out explicit reference to the lattice matrix A; but we 
will reserve the term homometric for sets R and S that 
satisfy 

S #  +R+c, but D(S)=D(R). (18) 

Here equality replaces congruence. Patterson's atten- 
tion was called to this problem by a practical example 
discovered by Pauling & Shappell (1930). The mathe- 
matical definitions (17) and (18) can be made for sets in 

n-dimensional space. Patterson gave many examples of 
homometric sets mod A in one dimension, and he sug- 
gested a general perturbation method for constructing 
homometric sets mod A in higher dimensions. 

The purpose of this paper is to give some theory and 
examples of strictly homometric sets, satisfying (18). 

Here is an example of homometric sets mod A in one 
dimension. It is due to Patterson (1944, p. 197, Fig. 2)" 

R={0 ,1 ,4 ,7} ,  S = { 0 , 4 , 5 , 7 } ,  A = 8 .  (19) 

It is easy to verify that S ~ + R + e mod 8 for any e. 
Next, we look at the difference-sets" 

D(R)= {0 ,0 ,0 ,0 ,1 , -  1 , 4 , - 4 , 7 , - 7 , 3 , - 3 , 6 , - 6 ,  
3,-3} (20) 

D(S)= { 0 , 0 , 0 , 0 , 4 , - 4 , 5 , - 5 , 7 , - 7 , 1 , -  1 , 3 , - 3 , 2 ,  
-2}. 

The difference sets are not equal; but they are congruent 
mod 8: 

D(R) = D(S)-{0 ,0 ,0 ,0 ,1 ,1 ,2 ,3 ,  3,4,4, 5, 5, 6 ,7 ,7}.  
(21) 

So these sets are homometric mod A - but not homo- 
metric. 

Garrido (1951) has also discussed sets that are not 
homometric, but are homometric mod A. 

Suppose we know that sets S and R are homometric. 
Given a non-singular lattice matrix A, we would like 
to say that $ and R are homometric modA.  Indeed, 
the equation D(S)= D(R) implies the congruence D(S) 
- D ( R )  mod A. But, unfortunately, the inequality 
S ¢ + R + c does not imply the incongruence S ~ + R + c 
mod A. For example, 

{0,1}¢ + {0,2}+c for any c 
but 

{0 ,1} -{0 ,2}+  1 mod 3 .  

The following theorem implies that, if $ and R are 
homometric, then $ and R are also homometric mod 
(2A) for all scalars 2 near one. So if we cannot use the 
matrix A, we can use any nearby matrix 2A. 

Theorem 1. In real n-dimensional space, let R and S be 
finite point sets such that 

S ¢ + R + c  for a n y c .  (22) 

Let A be an n x n non-singular matrix. Then for some 
e > 0  

S = + R + c mod (2A) for any e (23) 

provided 0 < 12- 11 < e. 
Proof Let a =  + 1. Suppose 

S --- aR + c mod 2A. (24) 

That means, if R and S each contain m points corre- 
spondingly indexed, 

s j = a r j + c + 2 A k j  ( j = l , . . . , m )  
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where the vectors kj have integer coordinates. Sum- 
mation yields 

me = m b -  2Ak (25) 
where 

and 

mb= ~ (sj-cru)  (26) 
j = l  

m 
k =  Z k j .  (27) 

j = l  

Therefore, for j =  1 , . . . ,  m, 

S j = O T j - I -  ( b - -  ...... m2Ak) +2Akj 

and, for j = 1 , . . . ,  m 

mA- l(s~ - arj - b) = 2hj (28) 

where hj is the vector ink j - k ,  which has integer com- 
ponents. 

But S Cal l  +b. Therefore, some of the vectors 2hj 
are non-zero. The non-zero scalar components of these 
vectors constitute a finite set of real numbers, t2. Now 
(28) implies that 2 is a number in f2 divided by an 
integer: 

2 = o)/N(co~f2, N =  + 1, + 2, + 3 , . . . ) .  

But these numbers have 0 as their only limit point. 
Therefore, some set 0 < 12- 11 < e contains none of the 
numbers A = co/N. But this is the assertion (23). 

Theorem 2. For finite point-sets, the equation 

X + Y = X + Z implies Y = Z.  (29) 

Proof. If X + Y = X + Z ,  then the Fourier sums (I1) 
satisfy 

~0(h,X) ~0(h,Y)=~0(h,X) ~0(h,Z) for all h .  (30) 

The function ~0(h,X) is not identically zero, since for 
h = 0 it equals the number of elements in the non-empty 
set Jr'. But ~0(h,X) is an analytic function of the n 
coordinates ht, h2, • • • of the vector h. Therefore, by the 
principle of analytic continuation, ~0(h,X) cannot 
vanish for all h in any sphere Ih-e l  < e. 

If ~0(h,X) ¢ 0, (30) implies 

(p(h,Y) = ~0(h,Z). (31) 

But we know that if q~(c,X)= 0, then the point c is the 
limit of points h at which ~0(h,X)~0. Since both sides 
of equation (31) are continuous functions of h, this 
equation must hold for all h. 

But the identity of the transforms (31) implies the 
identity of the sets Y and Z. That is because, for any 
finite set W, the average over all h, 

average [~00a, W ) . exp (-2r~ih.  p)] (32) 

equals 0 if p is not in W or equals the multiplicity with 
which p occurs in W if peW. If we multiply the identity 
(31) by exp ( -  2z~ih. p) and average over h, we conclude 
Y=Z. 

In this proof, we used an average (32) over all h in 
real, n-dimensional space. That means this: we inte- 
grate over the set 

- ½ L < h j < ½ L  ( j = l , . . . , n )  

divide by the volume, L n, and take the limit as L -+ c~.] 
The analog of Theorem 2 for congruence is false. 

For example, if A = 6 and if 

X={0,2,4}, Y={0,1}, and Z={0,3} 
then 

X+Y--X+Z=-{0 ,  1,2,3,4,5} mod A 

but Y ~ Z mod A. (In fact, Y ~ + Z + c for any c.) 
Now we are almost ready to construct some homo- 

metric sets. First we need the idea of a centric (or 
centrosymmetric) set S. This is a set satisfying 

S - c =  - ( S - c )  (33) 

for some c. For finite sets, the center of symmetry is 
unique: it is the center of mass of S if every point is 
given unit weight; 

1 
C . . . .  (S 1-1- . . o -~- Sm) (34) 

m 

if S = {s~,. . . ,  Sm}. If a set R is not centric, we will call 
it acentric. Every acentric set has at least three points. 

Theorem 3. If the sets X and Y are both acentric, then 
the sets X + Y and X - Y  are homometric. 
Example 1. In one dimension, let 

X={0,4,9} and Y={0,1 ,3} .  

These sets are acentric. The theorem implies 

X + Y + a  and X - Y + b  are homometric (35) 

for any a and b. In this example, we will choose a =  0 
and b=3.  Then (35) yields the two homometric sets 

X + Y= {0,1,3,4,5,7,9,10,12} 
X - Y  + 3= {0,2,3,4,6,7,9,11,12}. (36) 

Example 2. The theorem permits X to equal Y. Let X = 
Y = {0, 1,3}. Then we get the homometric sets 

X+ Y= {0,1,1,2,3,3,4,4,6} 
X - Y =  { - 3 ,  - 2 ,  - 1,0,0,0, 1,2,3}. (37) 

Here X + Y is an acentric set, while X - Y  is centric; that 
is true in general if X= Y and X is acentric. Both sets 
have non-distinct points. 
Example 3. In two dimensions, let X and Y be the 
acentric sets 

X 

Y 
x x and y y .  

Let R = X + Y  and S = X - Y :  

r s s  

r r  s 

r r S S S S  

r r r r a n d  s s .  
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Example 4. For a non-degenerate three-dimensional 
analog of the last example, let X = {x0, x~, x2, x3}, where 

(i) (i)(i) (i) X 0 =  , X l :  , X 2 =  , X 3 =  . 

Let Y = ½X. (The multiple ½ is taken in order to achieve 
homometric sets with distinct points). Then X + Y and 
X - Y  are homometric. 
Example 5. Let X and Y be 

X 

Y Y  
x x and y 

Let R=X+Y and S = X - Y "  
r r  s 

r s s  

r r r r  s s 
r r a n d s s s s  . 

Although these sets are homometric, they are also 
equivalent under rigid motions: S can be transformed 
into R by a rotation through 90 ° followed by a reflection 
through a vertical axis. This example and Example 3 
show that homometric sets may or may not be equiv- 
alent under rigid motions. 
Proof  o f  Theorem 3. First we verify 

D ( X -  Y) = D(X) + D ( -  Y) = D(X) + D(Y)= D(X + Y) .  

Now we must show X + Y-C- + ( X -  Y)+ e for any e. 
Suppose 

X + Y = X - Y + e .  

Then Theorem 2 implies Y = - Y  + c. Then 

Y - ½ c = - ( Y - ½ e )  ; 

so Y would have to be symmetric - a contradiction. 
Suppose instead 

X + Y = - ( X - Y ) + e  
Then 

X + Y = Y - X + e  

Then Theorem 2 implies X = - X  + e, so X would have 
to be symmetric - again a contradiction. 

Calderon & Pepinsky (1952) observed that, if d~(x) 
and dz(x) are density functions, then the convolutions 

d(x)=dl(x)*d2(x) and d l ( x ) = d l ( x ) , d 2 (  - X) 

are density functions whose Fourier transforms have 
the same moduli. [The finite point sets Xt+×2 and 
Xl -X2 arise if the densities dl(x) and dz(x) are finite 
sums of delta functions.] Calderon & Pepinsky as- 
serted that, if dl and d2 are non-centrosymmetric, then 
'unless dt and dz satisfy special conditions, d will be 
essentially different from d 1 - that is, not related to d ~ 
by a trivial transformation such as a translation, rota- 
tion, or other symmetry operation';  but they did not 
say what the special conditions were. 

Following Calderon & Pepinsky we can show that, 
if X and Y are both eentric, then the equation D(X)= 
D(Y) implies X=Y +e.  (Therefore, centric sets X and Y 
cannot be homometric.) Like Theorem 3, this can be 
proved by analytic continuation: Let a and b be the 
centroids of X and Y, and let X0 = X - a  and Y0 = Y - b .  
Then 

Xo = - Xo, Yo = - Yo, and D(Xo) = D(Yo). 

Therefore, for all real vectors h, the functions ~o(h,Xo) 
and ~0(h, Yo) are real-valued, and 

~02(h, Xo) -- (p2(h, Yo). 

Therefore, for all h, 

[(p(h, X0) + ~0(h, Vo)] [q,(h, Xo)- q,(h, Yo)] = 0 .  

Since the first factor [~0 + ~0] is positive for h near 0, the 
second factor [~0-(p] must vanish for h near 0. But 
~0(h, X0)- ~0(h, Yo) is an entire analytic function of every 
component of h; therefore it vanishes for all h. So Xo= 
Y0; and X = Y + c, where c = a -  b. 

Piccard (1939, p. 31) presents a theorem concerning 
finite point sets R and S in one dimension. The theorem 
states that R and S cannot be homometric if the non- 
zero members of D(R) are distinct. This theorem does 
not contradict Theorem 3, since some non-zero mem- 
bers of D(X + Y) occur more than once if X and Y both 
have more than one member. 

Theorem 3 can be generalized: we will now show 
how to construct 2 k sets every two of which are homo- 
metric. 

Theorem 4. Let Po, P1 , . . . ,  Pk be centric sets. Let each 
set Pj have centroid O. Let each P~ consist of distinct 
points. Let each point p in Pj have Cartesian coordi- 
nates that are all rational numbers. Let to, Z1,. . . ,zk be 
real numbers that are linearly independent over the 
rationals (for instance, Zk=nk). For 0.~= + 1, 0"2= 
+ 1 , . . . , a k =  + 1 define 

k 

R(0.1.. . ,ak)=zoPo+ ~ 0..fc.iPj. (38) 
j = l  

Then every two of these sets are homometric. 
Proof. All of the sets (38) have the same difference set" 

D[R(0.1,...,0"k)] = zoD(Po) + z,D(P1)+ • • • + ZkD(Pk) • 
Therefore, we only have to prove that the identity 

R ( a , . . . , a k ) =  + R(fl~,. . . ,f lk)+e(for some e) (39) 

(where all the ~'s and fl's are + 1) implies 

~l=fll ,  cq=flz,...,O~k=flk. (40) 

The equation (39) implies e =  0, since every set Pj is 
assumed to have centroid 0, which implies that every 
set + R(0.1, • • .) has centroid 0. So we will now suppose 
(39) holds with e = 0, and try to deduce (40). 

Suppose first" 

R(cq,...,czk) = - R ( f l , , . . . , i l k ) .  (41) 

A C 30A - 2 
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Let Po be some point in Po such that -Po is not in Po. 
Then (41) implies 

h k 

ZoPo+ ~ o~frjpj= -(zoqo+ Z flJzJqJ) 
j=l  j=l  

for some q0 in Po and some pj and e b in Pj (j'= 1 , . . . ,  n). 
Then 

k 
zo(Po+q0)+ ~ ~j(o~jpj+fljqj)=O. (42) 

j=l  

But qo # -Po, and all the points 

PoWqo, ~jPj + f l j~  (J= 1 , . . . , k )  

have rational coordinates. The linear independence of 
Zo,.. . ,zk over the rationals now implies that (42) is 
impossible. Therefore (41) is impossible. 

Suppose instead: 

R(cq,. . .  ,~k)= R(f l l , . . .  ,ilk). (43) 

Define the set of indices 

J =  {j such that ~j#f l j} .  (44) 

Assume J is not empty. Then (43) and Theorem 3 imply 

~jzjPj= ~ fljrjP~. (45) 
j~J j~J 

Now we proceed as before: let h be a particular 
member of J, and let Ph, but not --Ph, lie in P .  Now 

(44) implies 

ctjrjpj= ~ fljzjq~ (46) 
d J 

where p~ and o~ are in J. Since aj = - f l j  for j~J,  we find 

~jz~(p: + ~ )  =0 (47) 
J 

where pj + ~ # 0 for j =  h. But then (47) is impossible 
because the zj are independent over the rationals. 
Therefore, O must be empty; in other words, (43) im- 
plies cg= f l j ( j= 1, . . . ,n). 

I want to thank Dr Edward W. Hughes for telling 
me about the problem of homometric sets, and for 
generously giving me much time. 
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Probability Distribution of Bijvoet Differences. II* 
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The earlier theoretical treatment of the probability distribution of Bijvoet differences [Parthasarathy & 
Srinivasan (1964). Acta Cryst. 17, 1400-1407], has been extended to four new situations, namely, when 
the non-anomalous scatterers (Q) take up centrosymmetric configuration with the anomalous scatterers 
(P) corresponding to P = one, P = two, P = many atoms with centrosymmetric (MC) and P = many atoms 
with non-centrosymmetric (MNC) configuration. The theoretical distributions have been "~erified with 
hypothetical models. 

Introduction 

The probability distribution of the Bijvoet differences 
in the presence of anomalous scatterers in a non- 
centrosymmetric crystal was considered by Partha- 
sarathy & Srinivasan (1964, hereafter referred to as 

* Contribution No. 376 from the Centre of Advanced Study 
in Physics, University of Madras, Guindy Campus, Madras- 
600025, India. 

part I). This had led to useful information on the 
optimum condition for measuring Bijvoet differences. 
The Bijvoet ratio has been considered by Parthasarathy 
& Parthasarathi (1973). In all these studies four situa- 
tions have generally been considered for which prob- 
ability distributions were derived in part I. These 
correspond to the Q atoms (light atoms) being non- 
centrosymmetric with the P atoms (anomalous scat- 
terers) being one of the four types, namely (i) P =  one, 
(ii) P = two, (iii) P = many atoms with centrosymmetric 


