References

Anantharaman, T. R., Rama Rao, P. \& Lele,S. (1972). Recent Developments in MetallurgicalScience and Technology, pp. 407-484. New Delhi: Indian Institute of Metals.
Cohen, J. B. \& Wagner, C. N. J. (1962). J. Appl. Phys. 33, 2073-2077.

Gevers, R. (1954). Acta Cryst. 7, 337-343.
Lele, S. (1974a). Acta Cryst. A30, 509-513.
Lele, S. (1974b). Acta Cryst. A30, 689-693.
Nabarro, F. R. N. (1967). Theory of Crystal Dislocations. Oxford Univ. Press.
Prasad, B. \& Lele, S. (1971). Acta Cryst. A27, 54-64.
Warren, B. E. (1959). Progr. Metal Phys. 8, 147-202.

Ambiguities in the X-ray Analysis of Crystal Structures*

By Joel N. Franklin
Applied Mathematics Department, California Institute of Technology, Pasadena, California 91109, U.S.A.

(Received 11 April 1974; accepted 7 June 1974)
A mathematical construction is given for arbitrarily many distinct crystal structures all of which would give the same diffraction pattern. A. L. Patterson's concept of homometric sets is analyzed, and examples are given in one, two and three dimensions.

Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ be linearly independent vectors in threedimensional space. Let A be the three-by-three matrix whose columns are the \mathbf{a}_{j}. The vectors \mathbf{a}_{j} determine a lattice of points

$$
\begin{equation*}
\mathrm{A} \mathbf{n}=n_{1} \mathbf{a}_{\mathbf{1}}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3} \tag{1}
\end{equation*}
$$

where the n_{j} are integers. The basic cell of the lattice is the set of points

$$
\begin{equation*}
\mathbf{x}=\xi_{1} \mathbf{a}_{1}+\xi_{2} \mathbf{a}_{2}+\xi_{3} \mathbf{a}_{3} \text { with } 0 \leq \xi_{j}<1 \tag{2}
\end{equation*}
$$

The reciprocal lattice has the matrix

$$
\begin{equation*}
\mathrm{B}=\left(\mathrm{A}^{T}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{T} \tag{3}
\end{equation*}
$$

Its columns $\mathbf{b}_{\boldsymbol{j}}$ satisfy

$$
\begin{align*}
\mathbf{a}_{k} \cdot \mathbf{b}_{j}=\delta_{k j} & =0 \text { if } k \neq j \\
& =1 \text { if } k=j \tag{4}
\end{align*}
$$

The reciprocal lattice consists of the points Bh, where the h_{j} are integers (called Miller indices).

Let the atoms in a crystal be located at $\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}$ in the basic cell (2) and at all congruent points $\mathbf{r}_{j}+A n$. By X-ray analysis, one tries to find the positions \mathbf{r}_{j}.

The F factor is defined to be

$$
\begin{equation*}
F(\mathbf{h})=\sum_{s=1}^{N} f_{s} \exp 2 \pi i \mathbf{h} \cdot \mathbf{r}_{s} . \tag{5}
\end{equation*}
$$

For h in the reciprocal lattice, observations are made of

$$
\begin{equation*}
|F(\mathbf{h})|^{2}=\sum_{s=1}^{N} \sum_{t=1}^{N} f_{s} f_{t} \exp 2 \pi i \mathbf{h} .\left(\mathbf{r}_{t}-\mathbf{r}_{s}\right) \tag{6}
\end{equation*}
$$

[^0]The f_{s} are positive numbers.
If the F factors were observed, the \mathbf{r}_{s} would be determined uniquely. Ambiguity results from observing $\left|F^{2}\right|$ instead of F.

In the following definitions, let X, Y, \ldots represent finite non-empty point sets in the real Euclidian space of n dimensions. A set X is allowed to have repeated elements, but no ordering or indexing is prescribed. For instance, if $X=\{1,1,2\}$ in one dimension, then

$$
X=\{1,2,1\} \quad \text { but } \quad X \neq\{1,2\}
$$

Given X and Y, we define the sets

$$
\begin{align*}
X+Y & =\{\mathbf{x}+\mathbf{y}\}(\mathbf{x} \text { in } \mathrm{X}, \mathbf{y} \text { in } \mathrm{Y}) \tag{7}\\
\lambda X & =\{\lambda \mathbf{x}\}(\mathbf{x} \text { in } X) \\
-X & =\{-\mathbf{x}\}(\mathbf{x} \text { in } X) \\
X+\mathbf{c} & =\{\mathbf{x}+\mathbf{c}\}(\mathbf{x} \text { in } X) \\
X-Y & =X+(-Y)=\{\mathbf{x}-\mathbf{y}\} \\
D(X) & =X-X .
\end{align*}
$$

Thus, if X has m members, $\mathrm{D}(\mathrm{X})$ has m^{2} members, including at least m points $\mathbf{0}$.

Suppose

$$
\begin{equation*}
X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\} \text { and } Y=\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right\} \tag{8}
\end{equation*}
$$

We say

$$
\begin{aligned}
& X=Y \text { if } \\
& \mathbf{x}_{1}=\mathbf{y}_{j 1}, \ldots, \mathbf{x}_{m}=\mathbf{y}_{j m}
\end{aligned}
$$

where j_{1}, \ldots, j_{m} is some permutation of $1, \ldots, m$.
Let \mathbf{x} and \mathbf{y} be points in real n-dimensional space.

Let A be an $n \times n$ matrix. We write

$$
\begin{equation*}
\mathbf{x} \equiv \mathbf{y} \bmod \mathrm{A} \tag{9}
\end{equation*}
$$

to mean

$$
\mathbf{x}=\mathbf{y}+\mathrm{Ak}
$$

where \mathbf{k} is some vector with integer components, or equivalently

$$
\mathbf{x}=\mathbf{y}+k_{1} \mathbf{a}_{1}+\ldots+k_{n} \mathbf{a}_{n}
$$

where the k_{j} are integers and the \mathbf{a}_{j} are the columns of A.

If X and Y are the sets (8) in n dimensions, we say

$$
\begin{equation*}
X \equiv Y \bmod A \tag{10}
\end{equation*}
$$

if

$$
\mathbf{x}_{k} \equiv \mathbf{y}_{j k} \bmod \mathbf{A}(k=1, \ldots, m)
$$

where j_{1}, \ldots, j_{m} is some permutation of $1, \ldots, m$.
If X is a (finite, non-empty, real) set in n dimensions, we define the complex-valued Fourier-sum transform

$$
\begin{equation*}
\varphi(\mathbf{h}, \mathrm{X})=\sum_{\mathbf{x} \in \mathrm{X}} \exp 2 \pi i \mathbf{h} \cdot \mathbf{x} \tag{11}
\end{equation*}
$$

for all real \mathbf{h} in n dimensions. Note that

$$
\begin{gather*}
|\varphi(\mathbf{h}, \mathbf{X})|^{2}=\varphi[\mathbf{h}, \mathrm{D}(\mathbf{X})] \tag{12}\\
\varphi(\mathbf{h},-\mathbf{X})=\varphi^{*}(\mathbf{h}, \mathbf{X}) \tag{13}\\
\varphi(\mathbf{h}, \mathbf{X}+\mathrm{Y})=\varphi(\mathbf{h}, \mathbf{X}) \varphi(\mathbf{h}, \mathbf{Y}) . \tag{14}
\end{gather*}
$$

[By φ^{*} in (13) we mean the complex conjugate of φ. Thus, φ is real if $\mathrm{X}=-\mathrm{X}$.) The function φ is just an F factor if all the f factors are replaced by 1 .
In the basic cell of a crystal, let

$$
\mathbf{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right\}
$$

be the set of positions of the atoms. By observing $|F(\mathbf{h})|^{2}$ for h in the reciprocal lattice, one finds $D(R) \bmod A$. Note that one does not find $D(R)$, but only $D(R)$ mod A. The question is: to what extent does $D(R) \bmod A$ determine R ?

There are trivial modifications of R that leave the difference set unchanged. If

$$
\begin{equation*}
S \equiv \pm R+c \bmod A \tag{15}
\end{equation*}
$$

where \mathbf{c} is any single vector, then

$$
\begin{equation*}
D(S) \equiv D(R) \bmod A . \tag{16}
\end{equation*}
$$

If sets R and S satisfy

$$
\mathrm{S} \not \equiv \pm \mathrm{R}+\mathrm{c} \bmod A, \text { but } \mathrm{D}(\mathrm{~S}) \equiv \mathrm{D}(\mathrm{R}) \bmod \mathrm{A}(17
$$

we will say that the sets S and R are homometric mod A. Patterson (1944) called such sets homometric - without explicit reference to the lattice matrix A; but we will reserve the term homometric for sets \mathbf{R} and S that satisfy

$$
\begin{equation*}
S \neq \pm R+\mathbf{c}, \text { but } D(S)=D(R) . \tag{18}
\end{equation*}
$$

Here equality replaces congruence. Patterson's attention was called to this problem by a practical example discovered by Pauling \& Shappell (1930). The mathematical definitions (17) and (18) can be made for sets in
n-dimensional space. Patterson gave many examples of homometric sets $\bmod \mathrm{A}$ in one dimension, and he suggested a general perturbation method for constructing homometric sets mod A in higher dimensions.

The purpose of this paper is to give some theory and examples of strictly homometric sets, satisfying (18).

Here is an example of homometric sets $\bmod \mathrm{A}$ in one dimension. It is due to Patterson (1944, p. 197, Fig. 2):

$$
\begin{equation*}
R=\{0,1,4,7\}, \quad S=\{0,4,5,7\}, \quad A=8 \tag{19}
\end{equation*}
$$

It is easy to verify that $S \not \equiv \pm R+\mathbf{c} \bmod 8$ for any \mathbf{c}. Next, we look at the difference-sets:

$$
\begin{align*}
D(R) & =\{0,0,0,0,1,-1,4,-4,7,-7,3,-3,6,-6, \tag{20}\\
& 3,-3\} \\
D(S) & =\{0,0,0,0,4,-4,5,-5,7,-7,1,-1,3,-3,2, \\
& -2\} .
\end{align*}
$$

The difference sets are not equal; but they are congruent $\bmod 8:$

$$
\begin{equation*}
D(R) \equiv D(S) \equiv\{0,0,0,0,1,1,2,3,3,4,4,5,5,6,7,7\} \tag{21}
\end{equation*}
$$

So these sets are homometric $\bmod \mathrm{A}-$ but not homometric.

Garrido (1951) has also discussed sets that are not homometric, but are homometric $\bmod \mathrm{A}$.

Suppose we know that sets S and R are homometric. Given a non-singular lattice matrix A, we would like to say that S and R are homometric $\bmod A$. Indeed, the equation $D(S)=D(R)$ implies the congruence $D(S)$ $\equiv \mathrm{D}(\mathrm{R}) \bmod \mathrm{A}$. But, unfortunately, the inequality $S \neq \pm R+c$ does not imply the incongruence $S \not \equiv \pm R+c$ $\bmod \mathrm{A}$. For example,

$$
\{0,1\} \neq \pm\{0,2\}+\mathbf{c} \quad \text { for any } \mathbf{c}
$$

but

$$
\{0,1\} \equiv\{0,2\}+1 \bmod 3 .
$$

The following theorem implies that, if S and R are homometric, then S and R are also homometric mod (λA) for all scalars λ near one. So if we cannot use the matrix A, we can use any nearby matrix λA.

Theorem 1. In real n-dimensional space, let R and S be finite point sets such that

$$
\begin{equation*}
S \neq \pm R+c \quad \text { for any } \mathbf{c} \tag{22}
\end{equation*}
$$

Let A be an $n \times n$ non-singular matrix. Then for some $\varepsilon>0$

$$
\begin{equation*}
\mathrm{S} \equiv \pm \mathrm{R}+\mathbf{c} \bmod (\lambda A) \quad \text { for any } \mathbf{c} \tag{23}
\end{equation*}
$$

provided $0<|\lambda-1|<\varepsilon$.
Proof. Let $\sigma= \pm 1$. Suppose

$$
\begin{equation*}
\mathrm{S} \equiv \sigma \mathrm{R}+\mathrm{c} \bmod \lambda \mathrm{~A} . \tag{24}
\end{equation*}
$$

That means, if R and S each contain m points correspondingly indexed,

$$
\mathbf{s}_{j}=\sigma \mathbf{r}_{j}+\mathbf{c}+\lambda \mathbf{A} \mathbf{k}_{j} \quad(j=1, \ldots, m)
$$

where the vectors $\mathbf{k}_{\boldsymbol{j}}$ have integer coordinates. Summation yields

$$
\begin{equation*}
m \mathbf{c}=m \mathbf{b}-\lambda \mathrm{A} \mathbf{k} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
m \mathbf{b}=\sum_{j=1}^{m}\left(\mathbf{s}_{j}-\sigma \mathbf{r}_{j}\right) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{k}=\sum_{j=1}^{m} \mathbf{k}_{j} \tag{27}
\end{equation*}
$$

Therefore, for $j=1, \ldots, m$,

$$
\mathbf{s}_{j}=\sigma \mathbf{r}_{j}+\left(\mathbf{b}-\frac{\lambda}{m} \mathbf{A k}\right)+\lambda \mathrm{Ak}_{j}
$$

and, for $j=1, \ldots, m$

$$
\begin{equation*}
m \mathbf{A}^{-1}\left(\mathbf{s}_{j}-\sigma \mathbf{r}_{j}-\mathbf{b}\right)=\lambda \mathbf{h}_{j} \tag{28}
\end{equation*}
$$

where \mathbf{h}_{j} is the vector $m \mathbf{k}_{j}-\mathbf{k}$, which has integer components.

But $S \neq \sigma \mathrm{R}+\mathrm{b}$. Therefore, some of the vectors $\lambda \mathbf{h}_{j}$ are non-zero. The non-zero scalar components of these vectors constitute a finite set of real numbers, Ω. Now (28) implies that λ is a number in Ω divided by an integer:

$$
\lambda=\omega / N(\omega \in \Omega, N= \pm 1, \pm 2, \pm 3, \ldots) .
$$

But these numbers have 0 as their only limit point. Therefore, some set $0<|\lambda-1|<\varepsilon$ contains none of the numbers $\lambda=\omega / N$. But this is the assertion (23).

Theorem 2. For finite point-sets, the equation

$$
\begin{equation*}
X+Y=X+Z \text { implies } Y=Z \tag{29}
\end{equation*}
$$

Proof. If $\mathrm{X}+\mathrm{Y}=\mathrm{X}+\mathrm{Z}$, then the Fourier sums (11) satisfy

$$
\begin{equation*}
\varphi(\mathbf{h}, \mathbf{X}) \varphi(\mathbf{h}, \mathbf{Y})=\varphi(\mathbf{h}, \mathbf{X}) \varphi(\mathbf{h}, \mathbf{Z}) \text { for all } \mathbf{h} . \tag{30}
\end{equation*}
$$

The function $\varphi(\mathbf{h}, \mathrm{X})$ is not identically zero, since for $\mathbf{h}=\mathbf{0}$ it equals the number of elements in the non-empty set X. But $\varphi(\mathbf{h}, \mathrm{X})$ is an analytic function of the n coordinates h_{1}, h_{2}, \ldots of the vector h. Therefore, by the principle of analytic continuation, $\varphi(\mathbf{h}, \mathrm{X})$ cannot vanish for all \mathbf{h} in any sphere $|\mathbf{h}-\mathbf{c}|<\varepsilon$.

If $\varphi(\mathbf{h}, \mathrm{X}) \neq 0$, (30) implies

$$
\begin{equation*}
\varphi(\mathbf{h}, \mathbf{Y})=\varphi(\mathbf{h}, \mathbf{Z}) \tag{31}
\end{equation*}
$$

But we know that if $\varphi(\mathbf{c}, \mathrm{X})=0$, then the point \mathbf{c} is the limit of points h at which $\varphi(\mathbf{h}, \mathbf{X}) \neq 0$. Since both sides of equation (31) are continuous functions of \mathbf{h}, this equation must hold for all \mathbf{h}.

But the identity of the transforms (31) implies the identity of the sets Y and Z. That is because, for any finite set W, the average over all h,

$$
\begin{equation*}
\text { average }[\varphi(\mathbf{h}, \mathrm{W}) \cdot \exp (-2 \pi i \mathbf{h} \cdot \mathbf{p})] \tag{32}
\end{equation*}
$$

equals 0 if p is not in W or equals the multiplicity with which p occurs in W if $p \in W$. If we multiply the identity (31) by $\exp (-2 \pi i h . p)$ and average over h, we conclude $Y=Z$.

In this proof, we used an average (32) over all \mathbf{h} in real, n-dimensional space. That means this: we integrate over the set

$$
-\frac{1}{2} L \leq h_{j} \leq \frac{1}{2} L \quad(j=1, \ldots, n)
$$

divide by the volume, L^{n}, and take the limit as $L \rightarrow \infty$.]
The analog of Theorem 2 for congruence is false. For example, if $A=6$ and if

$$
X=\{0,2,4\}, Y=\{0,1\} \text {, and } Z=\{0,3\}
$$

then

$$
X+Y \equiv X+Z \equiv\{0,1,2,3,4,5\} \bmod A
$$

but $Y \not \equiv Z \bmod A$. (In fact, $Y \not \equiv \pm Z+\mathbf{c}$ for any \mathbf{c}.)
Now we are almost ready to construct some homometric sets. First we need the idea of a centric (or centrosymmetric) set S . This is a set satisfying

$$
\begin{equation*}
S-c=-(S-c) \tag{33}
\end{equation*}
$$

for some \mathbf{c}. For finite sets, the center of symmetry is unique: it is the center of mass of S if every point is given unit weight;

$$
\begin{equation*}
\mathbf{c}=\frac{1}{m}\left(\mathbf{s}_{1}+\ldots+\mathbf{s}_{m}\right) \tag{34}
\end{equation*}
$$

if $S=\left\{\mathbf{s}_{1}, \ldots, \mathbf{s}_{m}\right\}$. If a set R is not centric, we will call it acentric. Every acentric set has at least three points.

Theorem 3. If the sets X and Y are both acentric, then the sets $X+Y$ and $X-Y$ are homometric.
Example 1. In one dimension, let

$$
X=\{0,4,9\} \text { and } Y=\{0,1,3\} .
$$

These sets are acentric. The theorem implies

$$
\begin{equation*}
X+Y+\mathbf{a} \text { and } X-Y+b \text { are homometric } \tag{35}
\end{equation*}
$$

for any \mathbf{a} and \mathbf{b}. In this example, we will choose $\mathbf{a}=0$ and $\mathbf{b}=3$. Then (35) yields the two homometric sets

$$
\begin{align*}
X+Y & =\{0,1,3,4,5,7,9,10,12\} \\
X-Y+3 & =\{0,2,3,4,6,7,9,11,12\} \tag{36}
\end{align*}
$$

Example 2. The theorem permits X to equal Y . Let $\mathrm{X}=$ $\mathrm{Y}=\{0,1,3\}$. Then we get the homometric sets

$$
\begin{align*}
& X+Y=\{0,1,1,2,3,3,4,4,6\} \\
& X-Y=\{-3,-2,-1,0,0,0,1,2,3\} . \tag{37}
\end{align*}
$$

Here $X+Y$ is an acentric set, while $X-Y$ is centric; that is true in general if $X=Y$ and X is acentric. Both sets have non-distinct points.
Example 3. In two dimensions, let X and Y be the acentric sets

$$
\begin{array}{cc}
x & y \\
x & x \text { and } y y .
\end{array}
$$

Let $R=X+Y$ and $S=X-Y$:

r	s	s
r	r	s
r	r	s
r	s	s
$r r r r a n d$	s	s.

Example 4. For a non-degenerate three-dimensional analog of the last example, let $\mathrm{X}=\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$, where

$$
\mathbf{x}_{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{x}_{1}=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)
$$

Let $Y=\frac{1}{2} X$. (The multiple $\frac{1}{2}$ is taken in order to achieve homometric sets with distinct points). Then $X+Y$ and $X-Y$ are homometric.
Example 5. Let X and Y be

$$
\begin{array}{rr}
x & y y \\
x & x \text { and } y
\end{array}
$$

Let $R=X+Y$ and $S=X-Y$:

$r r$	s
r	s S
$r r r r$	s

Although these sets are homometric, they are also equivalent under rigid motions: S can be transformed into R by a rotation through 90° followed by a reflection through a vertical axis. This example and Example 3 show that homometric sets may or may not be equivalent under rigid motions.
Proof of Theorem 3. First we verify

$$
D(X-Y)=D(X)+D(-Y)=D(X)+D(Y)=D(X+Y)
$$

Now we must show $X+Y \neq \pm(X-Y)+c$ for any c.
Suppose

$$
X+Y=X-Y+c
$$

Then Theorem 2 implies $Y=-Y+c$. Then

$$
Y-\frac{1}{2} \mathbf{c}=-\left(Y-\frac{1}{2} \mathbf{c}\right)
$$

so Y would have to be symmetric - a contradiction. Suppose instead

$$
X+Y=-(X-Y)+c
$$

Then

$$
X+Y=Y-X+c
$$

Then Theorem 2 implies $X=-X+c$, so X would have to be symmetric - again a contradiction.

Calderon \& Pepinsky (1952) observed that, if $d_{1}(\mathbf{x})$ and $d_{2}(\mathbf{x})$ are density functions, then the convolutions

$$
d(\mathbf{x})=d_{1}(\mathbf{x}) * d_{2}(\mathbf{x}) \text { and } d^{1}(\mathbf{x})=d_{1}(\mathbf{x}) * d_{2}(-\mathbf{x})
$$

are density functions whose Fourier transforms have the same moduli. [The finite point sets $X_{1}+X_{2}$ and X $-X_{2}$ arise if the densities $d_{1}(\mathbf{x})$ and $d_{2}(\mathbf{x})$ are finite sums of delta functions.] Calderon $\&$ Pepinsky asserted that, if d_{1} and d_{2} are non-centrosymmetric, then 'unless d_{1} and d_{2} satisfy special conditions, d will be essentially different from d^{1} - that is, not related to d^{1} by a trivial transformation such as a translation, rotation, or other symmetry operation'; but they did not say what the special conditions were.

Following Calderon \& Pepinsky we can show that, if X and Y are both centric, then the equation $D(X)=$ $D(Y)$ implies $X=Y+c$. (Therefore, centric sets X and Y cannot be homometric.) Like Theorem 3, this can be proved by analytic continuation: Let \mathbf{a} and \mathbf{b} be the centroids of X and Y, and let $X_{0}=X-\mathbf{a}$ and $Y_{0}=Y-\mathbf{b}$. Then

$$
X_{0}=-X_{0}, Y_{0}=-Y_{0}, \text { and } D\left(X_{0}\right)=D\left(Y_{0}\right)
$$

Therefore, for all real vectors \mathbf{h}, the functions $\varphi\left(\mathbf{h}, \mathrm{X}_{0}\right)$ and $\varphi\left(\mathbf{h}, \mathrm{Y}_{0}\right)$ are real-valued, and

$$
\varphi^{2}\left(\mathbf{h}, \mathbf{X}_{0}\right)=\varphi^{2}\left(\mathbf{h}, \mathrm{Y}_{0}\right)
$$

Therefore, for all \mathbf{h},

$$
\left[\varphi\left(\mathbf{h}, \mathrm{X}_{0}\right)+\varphi\left(\mathbf{h}, \mathrm{Y}_{0}\right)\right]\left[\varphi\left(\mathbf{h}, \mathrm{X}_{0}\right)-\varphi\left(\mathbf{h}, \mathrm{Y}_{0}\right)\right]=0
$$

Since the first factor $[\varphi+\varphi$] is positive for h near 0 , the second factor $[\varphi-\varphi$] must vanish for \mathbf{h} near $\mathbf{0}$. But $\varphi\left(\mathbf{h}, \mathbf{X}_{0}\right)-\varphi\left(\mathbf{h}, \mathrm{Y}_{0}\right)$ is an entire analytic function of every component of h; therefore it vanishes for all h. So $X_{0}=$ Y_{0}; and $X=Y+\mathbf{c}$, where $\mathbf{c}=\mathbf{a}-\mathbf{b}$.

Piccard (1939, p. 31) presents a theorem concerning finite point sets R and S in one dimension. The theorem states that R and S cannot be homometric if the nonzero members of $D(R)$ are distinct. This theorem does not contradict Theorem 3, since some non-zero members of $D(X \pm Y)$ occur more than once if X and Y both have more than one member.

Theorem 3 can be generalized: we will now show how to construct 2^{k} sets every two of which are homometric.

Theorem 4. Let $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{k}$ be centric sets. Let each set P_{j} have centroid $\mathbf{0}$. Let each P_{j} consist of distinct points. Let each point \mathbf{p} in P_{j} have Cartesian coordinates that are all rational numbers. Let $\tau_{0}, \tau_{1}, \ldots, \tau_{k}$ be real numbers that are linearly independent over the rationals (for instance, $\tau_{k}=\pi^{k}$). For $\sigma_{1}= \pm 1, \sigma_{2}=$ $\pm 1, \ldots, \sigma_{k}= \pm 1$ define

$$
\begin{equation*}
\mathrm{R}\left(\sigma_{1}, \ldots, \sigma_{k}\right)=\tau_{0} \mathrm{P}_{0}+\sum_{j=1}^{k} \sigma_{j} \tau_{j} \mathrm{P}_{j} \tag{38}
\end{equation*}
$$

Then every two of these sets are homometric.
Proof. All of the sets (38) have the same difference set:
$\mathrm{D}\left[\mathrm{R}\left(\sigma_{1}, \ldots, \sigma_{k}\right)\right]=\tau_{0} \mathrm{D}\left(\mathrm{P}_{0}\right)+\tau_{1} \mathrm{D}\left(\mathrm{P}_{1}\right)+\ldots+\tau_{k} \mathrm{D}\left(\mathrm{P}_{k}\right)$. Therefore, we only have to prove that the identity

$$
\begin{equation*}
\mathrm{R}\left(\alpha_{1}, \ldots, \alpha_{k}\right)= \pm \mathrm{R}\left(\beta_{1}, \ldots, \beta_{k}\right)+\mathbf{c}(\text { for some } \mathbf{c}) \tag{39}
\end{equation*}
$$

(where all the α 's and β 's are ± 1) implies

$$
\begin{equation*}
\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots, \alpha_{k}=\beta_{k} \tag{40}
\end{equation*}
$$

The equation (39) implies $\mathbf{c}=\mathbf{0}$, since every set P_{j} is assumed to have centroid 0 , which implies that every set $\pm R\left(\sigma_{1}, \ldots\right)$ has centroid 0 . So we will now suppose (39) holds with $\mathbf{c}=\mathbf{0}$, and try to deduce (40).

Suppose first:

$$
\begin{equation*}
\mathrm{R}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=-\mathrm{R}\left(\beta_{1}, \ldots, \beta_{k}\right) \tag{41}
\end{equation*}
$$

Let \mathbf{p}_{0} be some point in P_{0} such that ${ }^{-} \mathbf{p}_{0}$ is not in P_{0}. Then (41) implies

$$
\tau_{0} \mathbf{p}_{0}+\sum_{j=1}^{h} \alpha_{j} \tau_{j} \mathbf{p}_{j}=-\left(\tau_{0} \mathbf{q}_{0}+\sum_{j=1}^{k} \beta_{j} \tau_{j} \mathbf{q}_{j}\right)
$$

for some \mathbf{q}_{0} in \mathbf{P}_{0} and some \mathbf{p}_{j} and \mathbf{q}_{j} in $\mathrm{P}_{j}(j=1, \ldots, n)$. Then

$$
\begin{equation*}
\tau_{0}\left(\mathbf{p}_{0}+\mathbf{q}_{0}\right)+\sum_{j=1}^{k} \tau_{j}\left(\alpha_{j} \mathbf{p}_{j}+\beta_{j} \mathbf{q}_{j}\right)=0 \tag{42}
\end{equation*}
$$

But $\mathbf{q}_{0} \neq-\mathbf{p}_{0}$, and all the points

$$
\mathbf{p}_{0}+\mathbf{q}_{0}, \alpha_{j} \mathbf{p}_{j}+\beta_{j} \mathbf{q}_{j}(j=1, \ldots, k)
$$

have rational coordinates. The linear independence of $\tau_{0}, \ldots, \tau_{k}$ over the rationals now implies that (42) is impossible. Therefore (41) is impossible.
Suppose instead:

$$
\begin{equation*}
\mathrm{R}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\mathrm{R}\left(\beta_{1}, \ldots, \beta_{k}\right) . \tag{43}
\end{equation*}
$$

Define the set of indices

$$
\begin{equation*}
\mathrm{J}=\left\{j \text { such that } \alpha_{j} \neq \beta_{j}\right\} . \tag{44}
\end{equation*}
$$

Assume J is not empty. Then (43) and Theorem 3 imply

$$
\begin{equation*}
\sum_{j \in J} \alpha_{j} \tau_{j} \mathrm{P}_{j}=\sum_{j \in J} \beta_{j} \tau_{j} \mathrm{P}_{j} \tag{45}
\end{equation*}
$$

Now we proceed as before: let h be a particular member of J, and let p_{h}, but not $-p_{h}$, lie in P. Now
(44) implies

$$
\begin{equation*}
\sum_{J} \alpha_{j} \tau_{j} \mathbf{p}_{j}=\sum_{J} \beta_{j} \tau_{j} \mathbf{q}_{j} \tag{46}
\end{equation*}
$$

where \mathbf{p}_{j} and \mathbf{q}_{j} are in J. Since $\alpha_{j}=-\beta_{j}$ for $j \in J$, we find

$$
\begin{equation*}
\sum_{j} \alpha_{j} \tau_{j}\left(\mathbf{p}_{j}+\mathbf{q}_{j}\right)=\mathbf{0} \tag{47}
\end{equation*}
$$

where $\mathbf{p}_{j}+\mathbf{q}_{j} \neq \mathbf{0}$ for $j=h$. But then (47) is impossible because the τ_{j} are independent over the rationals. Therefore, J must be empty; in other words, (43) implies $\alpha_{j}=\beta_{j}(j=1, \ldots, n)$.

I want to thank Dr Edward W. Hughes for telling me about the problem of homometric sets, and for generously giving me much time.

References

Calderon, A. \& Pepinsky, R. (1952). Computing Methods and the Phase Problem in X-ray Crystal Analysis, edited by R. Pepinsky, Appendix 8, pp. 356-360. X-ray Crystal Analysis Laboratory, Pennsylvania State Univ.
Garrido, J. (1951). Bull. Soc. Fr. Minér. Crist. 74, 397. Patterson, A. L. (1944). Phys. Rev. 64, 195-201.
Pauling, L. \& Shappell, M. D. (1930). Z. Kristallogr. 75, 128.

Piccard, S. (1939). Sur les Ensembles de Distances des Ensembles de Points d'un Espace Euclidien, Mém. Univ. Neuchâtel, 13.

Probability Distribution of Bijvoet Differences. II*

By P.Swaminathan and R.Srinivasan
Centre of Advanced Study in Physics, University of Madras, Madras-600025, India

(Received 8 May 1974; accepted 10 May 1974)
The earlier theoretical treatment of the probability distribution of Bijvoet differences [Parthasarathy \& Srinivasan (1964). Acta Cryst. 17, 1400-1407], has been extended to four new situations, namely, when the non-anomalous scatterers (Q) take up centrosymmetric configuration with the anomalous scatterers (P) corresponding to $P=$ one, $P=$ two, $P=$ many atoms with centrosymmetric ($M C$) and $P=$ many atoms with non-centrosymmetric ($M N C$) configuration. The theoretical distributions have been verified with hypothetical models.

Introduction

The probability distribution of the Bijvoet differences in the presence of anomalous scatterers in a noncentrosymmetric crystal was considered by Parthasarathy \& Srinivasan (1964, hereafter referred to as

[^1]part I). This had led to useful information on the optimum condition for measuring Bijvoet differences. The Bijvoet ratio has been considered by Parthasarathy \& Parthasarathi (1973). In all these studies four situations have generally been considered for which probability distributions were derived in part I. These correspond to the Q atoms (light atoms) bcing noncentrosymmetric with the P atoms (anomalous scatterers) being one of the four types, namely (i) $P=$ one, (ii) $P=$ two, (iii) $P=$ many atoms with centrosymmetric

[^0]: * This work was supported by A.E.C. Contract AT(04-3)767, Project Agreement No. 12.

[^1]: * Contribution No. 376 from the Centre of Advanced Study in Physics, University of Madras, Guindy Campus, Madras600025, India.

